# FormulaCode: Evaluating Agentic Superoptimization on Large Codebases

Atharva Sehgal<sup>1\*</sup>, **James Hou<sup>3\*</sup>**, Swarat Chaudhuri<sup>1</sup>, Jennifer J. Sun<sup>2</sup>, Yisong Yue<sup>3</sup>
<sup>1</sup>UT Austin <sup>2</sup>Cornell University <sup>3</sup>Caltech, \*Equal Contribution



s Scope Updates

Repo

File

File

Small

Data Leakage

No, human

relative perf.

Yes, hidden

needed.

Yes, continual

updating

needed.

No, synthetic

## Problem

Can coding agents optimize software performance as well as humans can?

# Motivation



FormulaCode is a continuously updating benchmark that complements SWE-Bench in evaluating optimization agents (like AlphaEvolve)

Current coding benchmarks present an incomplete picture of coding performance.

Evaluation

Performance

Benchmarks

**Unit Tests** 

#### Benchmark Construction

Sample human improvement on asv benchmark







Figure 2: Distribution of FORMULACODE tasks across five open source GitHub repositories. These repositories have a combined 157,000+ GitHub stars and 200,000+ academic citations and each repository uses *Airspeed Velocity* for regression testing. We collect 451 filtered tasks for our preliminary dataset consisting of 500,000+ measurements.

| Benchmark                            | Human | GPT-40 | Sonnet 3.7 | OpenEvolve | Composition |
|--------------------------------------|-------|--------|------------|------------|-------------|
| objective benchmark                  | 46.91 | 59.39  | -0.61      | 44.36      | 70.91       |
| coordinates.FrameBenchmarks          | 16.60 | 18.61  | 9.80       | 8.15       | 23.75       |
| coordinates.RepresentationBenchmarks | 17.71 | 17.63  | 23.96      | 3.88       | 9.04        |
| coordinates.SkyCoordBenchmarks       | 21.28 | 13.37  | 3.40       | 13.95      | 16.05       |
| coordinates (core)                   | 2.92  | 22.91  | -5.75      | 9.74       | -4.51       |
| imports                              | -0.25 | 0.00   | 0.25       | -0.25      | 0.25        |
| Mean Improvement Percentage          | 16.77 | 15.88  | 5.24       | 10.72      | 14.71       |

Benchmark

SWE-Bench

LiveCodeBench

CruxEval

# Tasks

2292

800++

Data Source

Github

Competitive

Programming

Autogenerated

| Benchmark<br>Suite | # Instances | GPT-4o     |        | Sonnet 3.7 |        | GPT-40 Oracle |        | Sonnet 3.7 Oracle |        |
|--------------------|-------------|------------|--------|------------|--------|---------------|--------|-------------------|--------|
|                    |             | $\Delta\%$ | #Valid | $\Delta\%$ | #Valid | $\Delta\%$    | #Valid | $\Delta\%$        | #Valid |
| coordinates        | 15          | -32.11     | 8      | 8.91       | 12     | -36.68        | 11     | 5.18              | 12     |
| imports            | 10          | -9.26      | 5      | 13.87      | 5      | 2.18          | 4      | 14.94             | 3      |
| io_ascii           | 7           | 0.13       | 2      | -23.96     | 3      | -4.37         | 4      | 15.01             | 4      |
| io_fits            | 3           | -2.37      | 1      | -56.86     | 1      | 21.18         | 1      | _                 | 0      |
| modeling           | 7           | -3.08      | 3      | 18.15      | 6      | -20.58        | 5      | 0.68              | 4      |
| stats              | 2           | -10.20     | 2      | -2.21      | 2      | -1.29         | 1      | -1.09             | 2      |
| table              | 7           | 3.53       | 3      | 23.58      | 5      | -5.31         | 3      | -1.98             | 6      |
| units              | 10          | -11.87     | 6      | 13.61      | 8      | -10.54        | 5      | -4.46             | 8      |
| Overall            | 61          | -13.19     | 30     | 9.02       | 42     | -16.58        | 34     | 3.08              | 39     |

Agent / Model FormulaCode Evaluations

### Takeaways

- LLMs can beat humans on targeted eval, but real-world optimization is multi-objective—local gains often harm global performance (low MIP).
- Human baselines help anchor evaluations and reduce data leakage.
- Benchmark functions provide dense, informative reward signals for learning agents.
- Human and agent patches target different areas—combining them can amplify gains.